Monday 10 July 2017

Black Scholes Formula For Stock Options


Preço de opções: modelo de Black-Scholes O modelo de Black-Scholes para calcular o prêmio de uma opção foi introduzido em 1973 em um artigo intitulado The Pricing of Options and Corporate Liabilities publicado no Journal of Political Economy. A fórmula, desenvolvida por três economistas Fischer Black, Myron Scholes e Robert Merton é talvez o modelo de preços de opções mais conhecido do mundo. Black faleceu dois anos antes de Scholes e Merton receberam o Prêmio Nobel de Economia de 1997 por seu trabalho em encontrar um novo método para determinar o valor dos derivativos (o Prêmio Nobel não é dado póstumo, no entanto, o comitê do Nobel reconheceu o papel dos negros no preto Modelo Scholes). O modelo Black-Scholes é usado para calcular o preço teórico das opções européias de colocação e compra, ignorando quaisquer dividendos pagos durante a vida útil das opções. Embora o modelo original de Black-Scholes não tenha levado em consideração os efeitos dos dividendos pagos durante a vida da opção, o modelo pode ser adaptado para contabilizar os dividendos, determinando o valor da data do dividendo do estoque subjacente. O modelo faz certas premissas, incluindo: As opções são europeias e só podem ser exercidas no vencimento. Nenhum dividendo é pago durante a vida da opção. Mercados eficientes (ou seja, os movimentos do mercado não podem ser previstos). Sem comissões. A taxa de risco e a volatilidade de O subjacente é conhecido e constante segue uma distribuição lognormal que é, os retornos sobre o subjacente são normalmente distribuídos. A fórmula, mostrada na Figura 4, leva em consideração as seguintes variáveis: Preço subjacente atual Opções de preço de exercício Tempo até o vencimento, expresso em percentual de ano Vulitabilidade implícita Taxas de juros livres de risco Figura 4: A fórmula de previsão de Black-Scholes para chamada Opções. O modelo é essencialmente dividido em duas partes: a primeira parte, SN (d1). Multiplica o preço pela variação do prémio de chamada em relação a uma alteração no preço subjacente. Esta parte da fórmula mostra o benefício esperado de comprar o subjacente definitivo. A segunda parte, N (d2) Ke (-rt). Fornece o valor atual de pagar o preço de exercício no vencimento (lembre-se, o modelo de Black-Scholes aplica-se a opções européias que são exercíveis apenas no dia do vencimento). O valor da opção é calculado tomando a diferença entre as duas partes, como mostrado na equação. A matemática envolvida na fórmula é complicada e pode ser intimidante. Felizmente, no entanto, os comerciantes e os investidores não precisam saber nem entender a matemática para aplicar o modelo de Black-Scholes em suas próprias estratégias. Como mencionado anteriormente, os comerciantes de opções têm acesso a uma variedade de calculadoras de opções on-line e muitas das plataformas de negociação de hoje possuem ferramentas de análise de opções robustas, incluindo indicadores e planilhas que executam os cálculos e produzem os valores de preços das opções. Um exemplo de uma calculadora on-line Black-Scholes é mostrado na Figura 5 para que o usuário deve inserir todas as cinco variáveis ​​(preço de operação, preço das ações, tempo (dias), volatilidade e taxa de juros livre de risco). Figura 5: Uma calculadora Black-Scholes online pode ser usada para obter valores para ambas as chamadas e colocações. Os usuários devem inserir os campos necessários e a calculadora faz o resto. O modelo Black Scholes, modelo Black Scholes-Merton, é um modelo de variação de preços ao longo do tempo de instrumentos financeiros, como estoques que podem, entre outras coisas, ser usados Para determinar o preço de uma opção de chamada europeia. O modelo pressupõe que o preço dos ativos altamente negociados segue um movimento geométrico browniano com deriva e volatilidade constantes. Quando aplicado a uma opção de estoque. O modelo incorpora a variação de preço constante do estoque, o valor do tempo do dinheiro. O preço de exercício da opção eo tempo para a expiração das opções. Carregando o jogador. BREAKING Down Black Scholes Model O Black Scholes Model é um dos conceitos mais importantes na teoria financeira moderna. Foi desenvolvido em 1973 por Fisher Black, Robert Merton e Myron Scholes e ainda é amplamente utilizado em 2016. É considerado como uma das melhores maneiras de determinar preços justos de opções. O modelo Black Scholes requer cinco variáveis ​​de entrada: o preço de exercício de uma opção, o preço atual das ações, o prazo de vencimento, a taxa livre de risco e a volatilidade. Além disso, o modelo pressupõe que os preços das ações seguem uma distribuição lognormal porque os preços dos ativos não podem ser negativos. Além disso, o modelo pressupõe que não há custos ou taxas de transação, a taxa de juros sem risco é constante para todos os vencimentos, é permitida a venda a descoberto de títulos com uso de receitas e não há oportunidades de arbitragem sem risco. Fórmula Black-Scholes A fórmula de opção de chamada Black Scholes é calculada multiplicando o preço das ações pela função de distribuição de probabilidade normal padrão cumulativa. Posteriormente, o valor presente líquido (VPL) do preço de exercício multiplicado pela distribuição normal padrão cumulativa é subtraído do valor resultante do cálculo anterior. Na notação matemática, C SN (d1) - Ke (-rT) N (d2). Por outro lado, o valor de uma opção de venda pode ser calculado usando a fórmula: P Ke (-rT) N (-d2) - SN (-d1). Em ambas as fórmulas, S é o preço das ações, K é o preço de exercício, r é a taxa de juros livre de risco e T é o prazo de vencimento. A fórmula para d1 é: (ln (SK) (r (volatilidade anualizada) 2 2) T) (volatilidade anualizada (T (0,5))). A fórmula para d2 é: d1 - (volatilidade anualizada) (T (0,5)). Limitações Como indicado anteriormente, o modelo Black Scholes é usado apenas para preço de opções européias e não leva em consideração que as opções americanas poderiam ser exercidas antes da data de validade. Além disso, o modelo assume dividendos e as taxas livres de risco são constantes, mas isso pode não ser verdade na realidade. O modelo também pressupõe que a volatilidade permanece constante ao longo das opções de vida, o que não é o caso porque a volatilidade flutua com o nível de oferta e demanda.

No comments:

Post a Comment